
Optimal Partition of QoS Requirements on

Unicast Paths and Multicast Trees

Dean H. Lorenz and Ariel Orda

Department of Electrical Engineering

Technion—Israel Institute of Technology

Haifa 32000, Israel
�
deanh@tx,ariel@ee � .technion.ac.il

Tel.: 972-4-82946-
�
60,46 �

Fax.: 972-4-8323041

Abstract

We investigate the problem of optimal resource allocation for end-to-end QoS requirements on unicast paths

and multicast trees. Specifically, we consider a framework in which resource allocation is based on local QoS

requirements at each network link, and associated with each link is a cost function that increases with the severity of

the QoS requirement. Accordingly, the problem that we address is how to partition an end-to-end QoS requirement

into local requirements, such that the overall cost is minimized. We establish efficient (polynomial) solutions for

both unicast and multicast connections. These results provide the required foundations for the corresponding QoS

routing schemes, which identify either paths or trees that lead to minimal overall cost. In addition, we show that

our framework provides better tools for coping with other fundamental multicast problems, such as dynamic tree

maintenance.

Keywords

QoS, QoS-dependent costs, Multicast, Routing, Broadband networks.

1

I. INTRODUCTION

Broadband integrated services networks are expected to support multiple and diverse applica-

tions, with various quality of service (QoS) requirements. Accordingly, a key issue in the design

of broadband architectures is how to provide the resources in order to meet the requirements of

each connection.

Supporting QoS connections requires the existence of several network mechanisms. One is

a QoS routing mechanism, which sets the connection’s topology, i.e., a unicast path or mul-

ticast tree. A second mechanism is one that provides QoS guarantees given the connection

requirements and its topology. Providing these guarantees involves allocating resources, e.g.,

bandwidth and buffers, on the various network elements. Such a consumption of resources has

an obvious cost in terms of network performance. The cost at each network element inherently

depends on the local availability of resources. For instance, consuming all the available band-

width of a link, considerably increases the blocking probability of future connections. Clearly,

the cost of establishing a connection (and allocating the necessary resources) should be a major

consideration of the connection (call) admission process. Hence, an important network opti-

mization problem is how to establish QoS connections in a way that minimizes their implied

costs. Addressing this problem impacts both the routing process and the allocation of resources

on the selected topology. The latter translates into an end-to-end QoS requirement partition

problem, namely local allocation of QoS requirements along the topology.

The support of QoS connections has been the subject of extensive research in the past few

years. Several studies and proposals considered the issue of QoS routing, e.g., [1], [3], [9],

[21], [24] and references therein. Mechanisms for providing various QoS guarantees have been

also widely investigated, e.g. [8], [22], [25], [26]. Although there are proposals for resource

reservation, most notably RSVP [4], they address only the signaling mechanisms and do not

provide the allocation policy. Indeed, the issue of optimal resource allocation, from a network

perspective, has been scarcely addressed. Some studies, e.g. [13], consider the specific, simple,

case of constant link costs, which are independent of the QoS (delay) supported by the link.

Pricing, as a network optimization mechanism, has been the subject of recent studies, however

they mostly considered either a basic best effort service environment, e.g. [14], [18], or simple,

single link [17] and parallel link [20] topologies.

2

In this paper, we investigate the problem of optimal resource allocation for end-to-end QoS

requirements on given unicast paths and multicast trees. Specifically, we consider a framework

in which resource allocation is based on the partition of the end-to-end QoS requirement into

local QoS requirements at each network element (link). We associate with each link a cost func-

tion that increases with the severity of the local QoS requirement. As will be demonstrated in

the next section, this framework is consistent with the proposals for QoS support on broadband

networks. Accordingly, the problem that we address is how to partition an end-to-end QoS re-

quirement into local requirements, such that the overall cost is minimized. This is shown to

be intractable even in the (simpler) case of unicast connections. Yet, we are able to establish

efficient (polynomial) solutions for both unicast and multicast connections, by imposing some

(weak) assumptions on the costs. These results provide the required foundations for the corre-

sponding QoS routing schemes, which identify either paths or trees that lead to minimal overall

cost. Moreover, we indicate how the above framework provides better tools for coping with

fundamental multicast problems, such as the dynamic maintenance of multicast trees.

A similar framework was investigated in [5], [19]. There too, it was proposed that end-to-end

QoS requirements should be partitioned into local (link) requirements and the motivation for

this approach was extensively discussed. [19] discussed unicast connections and focused on

loss rate guarantees. It considered a utility function, which is equivalent to (the minus of) our

cost function. However, rather than maximizing the overall utility, [19] focused on the optimiza-

tion of the bottleneck utility over the connection’s path. That is, their goal was to partition the

end-to-end loss rate requirement into link requirements over a given path, so as to maximize the

minimal utility value over the path links. Specifically, [19] investigated the performance of a

heuristic that equally partitioned the loss rate requirements over the links. By way of simula-

tions, it was indicated that the performance of that heuristic was reasonable for paths with few

(up to five) links and tight loss rate requirements; this finding was further supported by analysis.

However, it was indicated that performance deteriorated when either the number of links became

larger or when the connection was more tolerant to packet loss. It was concluded that for such

cases, as well as for alternate QoS requirements (such as delay), the development of optimal

QoS partition schemes is of interest. [5] considered multicast trees and a cost function that is a

special case of ours. Each tree link was assigned an upper bound on the cost, and the goal was

3

to partition the end-to-end QoS into local requirements, so that no link cost exceeds its bound.

Specifically, [5] considered two heuristics, namely equal and proportional partitions, and inves-

tigated their performance by way of simulations. It was demonstrated that proportional partition

offers better performance than equal partition, however it is not optimal. [5] too concluded that

more complex (optimal) partition schemes should be investigated. These two studies provide

interesting insights into our framework, and strongly motivate the optimization problems that

we investigate.

Another sequence of studies that is related to the present one is [9], [16]. These studies

investigated QoS partitioning and routing for unicast connections, in networks with uncertain

parameters. Their goal was to select a path, and partition the QoS requirements along it, so

as to maximize the probability of meeting the QoS requirements. As shall be shown, the link

probability distribution functions considered in [9], [16] correspond to a special case of the

cost functions considered in the present paper. The algorithms presented in [16] solve both the

routing and the QoS partition problem for unicast connections, under certain assumptions. The

present study offers an improved, less restrictive, solution for unicast, and, more importantly, a

generalized solution for multicast.

The general resource allocation problem is a constrained optimization problem. Due to its

simple structure, this problem is encountered in a variety of applications and has been studied

extensively [12]. Optimal Partition of end-to-end QoS requirements over unicast paths is a

special case of that problem, however the multicast version is not. Our main contribution is

in solving the problem for multicast connections. We also present several algorithms for the

unicast problem, emphasizing network related aspects, such as distributed implementation.

The rest of this paper is structured as follows. Section II formulates the model and problems,

and relates our framework to QoS network architectures. The optimal partition problem for

unicast connections is investigated in Section III. The optimal partition problem for multicast

connections is discussed in Section IV. This problem is solved using a similar approach to that

used for unicast, nonetheless the analysis and solution structure turn out to be much more com-

plex. Section V relates these findings to unicast and multicast QoS routing. Finally, concluding

remarks are presented in Section VI. Due to space limits, some technical details and proofs are

omitted from this version and can be found in [15].

4

II. MODEL AND PROBLEMS

In this section we present our framework and introduce the QoS partition problem. We assume

that the connection topology is given, i.e., a path � for unicast, or a tree � for multicast. The

problem of finding such topologies, namely QoS routing, is briefly discussed in Section V.

For clarity, we detail here only the framework for unicast connections. The definitions and

terminology for multicast trees are similar and are presented, together with the corresponding

solution, in Section IV.

A. QoS Requirements

A QoS partition of an end-to-end QoS requirement � , on a path � , is a vector �����	��
��� �����
of local QoS requirements, which satisfies the end-to-end QoS requirement, � .

There are two fundamental classes of QoS parameters: bottleneck parameters, such as band-

width, and additive parameters, such as delay and jitter. Each class induces a different form of

our problem, and the complexities of the solutions are vastly different. For bottleneck param-

eters, we necessarily have
������ for all ��� � ,1 because � is determined by the bottleneck

link, i.e., � �������������
� . Since allocating more than � induces a higher cost, yet does not

improve the overall QoS, the optimal partition is � !� �"�#�$� ����� . For additive QoS requirements,

a feasible partition, �%� , must satisfy & �'�(�
��)*� . In this case, the optimal QoS partition

problem is intractable [16], however we will show that, by restricting ourselves to convex cost

functions, we can achieve an efficient (tractable) solution. Some QoS parameters, such as loss

rate, are multiplicative, i.e., �+�-, �����/.
�10 . For instance, for a loss rate QoS requirement 2 ,

we have �3�34/562 . This case too can be expressed as an additive requirement, by solving for

. 587�9;:<��0 ; indeed, the end-to-end requirement becomes . 5=7�9;:<��0$� & �'�(�. 5=7�9;:�
�10 , i.e., an

additive requirement.

There are QoS provision mechanisms, in which the (additive) delay bounds are determined

by a (bottleneck) “rate”. A notable example is the Guaranteed Service architecture for IP [23],

which is based on rate-based schedulers [8], [22], [25], [26]. In some cases, such mechanisms

may allow to translate a delay requirement on a given path into a bottleneck (rate) require-

ment, hence the partitioning is straightforward. However, such a translation cannot be applied
>
This is also true for a multicast tree ? .

5

in general, e.g. due to complications created by topology aggregation and hierarchical routing.2

Hence, our study focuses on the general partition problem of additive QoS requirements.

B. Cost Functions

As mentioned, we associate with each local QoS requirement value
 � , a cost � � .
��0 . We

make the natural assumption that � � .
�10 is higher as
 � is tighter. For instance, when
 � stands

for delay, � � .
��0 is a nonincreasing function, whereas when
 � stands for bandwidth, � � .
� 0 is

nondecreasing. We further assume that the cost functions are (weakly) convex. The overall cost

of a partition is the sum of the local costs, i.e., � . � � 0�� & ����� � � .
�10 .
The cost may reflect the resources, such as bandwidth, needed to guarantee the QoS require-

ment. Alternatively, the cost may be the price that the user is required to pay to guarantee a

specific QoS. The cost may be associated with either the set-up or the run-time phase of a con-

nection. Also, it may be used for network management to discourage the usage of congested

links, by assigning higher costs to those links.

A particular form of cost evolves in models that consider uncertainty in the available param-

eters at the connection setup phase [9], [16], which we now briefly overview. In such models,

associated with each link is a probability of failure
� � .
�10 , when trying to set up a local QoS

requirement of
 � . The optimal QoS partition problem is then to find a QoS partitionthat min-

imizes the probability of failure; that is, it minimizes the product , ���(� � � .
��0 . Since we have

7�9 :
�
, �'�(� � � .
�10�� � & ����� 7�9 : � � .
�10 , we can restate this problem back as a summation, namely

we define a cost function for each link, � � .
�0<� 7�9;: � � .
�0 , and solve for these costs.

C. Problem Formulation

The optimal QoS partition problem is then defined as follows.

Problem OPQ (Optimal Partition of QoS): Given a path � and an end-to-end QoS require-

ment � , find a QoS partition � !� � ��
 !� � ����� , such that ��� �%!���) � . � � 0
	 for any (other) QoS

partition � � .
This study focuses on the solution of Problem OPQ for additive QoS parameters, which,

as mentioned, presents a considerably more complex problem than the bottleneck version. In

Section III we solve the problem for unicast paths, and in Section IV we generalize the solution�
Indeed, the ATM hierarchical QoS routing protocol [21], requires local (per cluster) QoS guarantees.

6

to multicast trees. For clarity, and without loss of generality, we concretize the presentation on

end-to-end delay requirements.

D. Example

We illustrate Problem OPQ through an example. Consider the network of Fig. 1. The source

is node
�

and the destination is node � . The cost function for each link � is

��� .
�0 �
���� 	�
�� 	�
 if
���� � 	� if
=)�� ���

where � � is the minimal delay that can be guaranteed on link � when utilizing all its available

resources. The cost increases as the delay requirement approaches this limit and is infinite for

=)�� � . We set ����� 4 	���� ��� and the end-to-end delay requirement is � � 4�� .
 "!#"$ "!#"$ "!#"$% & '(>�) �+*�, >-/. > (�0) �+*1, 2-/. 2

Fig. 1. Example: instance of Problem OPQ

We consider three allocation schemes: equal [5], [19], proportional [5] and the optimal allo-

cation.

equal allocation
3� �
4� � 4��65�� �87 . In this case � � . 7 0��"4�569 	 � � . 7 0�� 4 and � . � 0 �"46:;� .
proportional allocation The allocation is proportional to the “utilization” of the links, namely

<�>=
4� ���?�@=A���CB*
<� ��� 	
4� ��D . We get � � . � 0�� � � . D 0 �"4�56� and � . � 0 � 4 .
optimal allocation The solution of Problem OPQ in this case is
E� �GF 	
4� �IH . The costs are� � . F 0 �"4�5�� 	 � � . H 0����J569 and the overall optimal cost is � . �%0<��KL:MD6� .
We see that the proportional allocation scheme renders a better cost than the equal allocation,

however it is inferior to the optimal allocation.

The difference between the respective performances grows with the number of hops. More-

over, it may be substantially large even for the above simple two-hop path, with an alternate

set of cost functions. For instance, consider the following cost function, which incorporates a

higher penalty for utilizing link resources:

��� .
�0 � � �
.
�5N� � 0PO 	

7

where � � 4 . For � � � , the overall cost � . �%0 is KL:14 � with an equal allocation, KL:14 F with a

proportional allocation and KL: K�7 with the optimal one. We see that, in this case, the proportional

allocation is worse than the equal allocation, and the optimal cost is significantly better than the

rest.

III. SOLUTION TO PROBLEM OPQ

In this section we investigate the properties of optimal solutions to Problem OPQ for additive

QoS parameters and present efficient algorithms. These results will be used in the next sec-

tion to solve Problem MOPQ, i.e., the generalization of Problem OPQ to multicast trees. As

mentioned, Problem OPQ is a special case of the resource allocation problem. The fastest so-

lution to this problem, [6], requires
� .�� � � 719;: . � 5 � � � 0 0 . In Section III-B we present a greedy

pseudo-polynomial solution, which provides appealing advantages for distributed and dynamic

implementations, as discussed in Section III-C. In Section III-D we present a polynomial so-

lution that, albeit of slightly higher complexity than that of [6], provides the foundations of

our solution to Problem MOPQ. Finally, in Section III-E we discuss special cases with lower

complexity.

As mentioned, we assume that the QoS parameter is end-to-end delay. We further assume that

all parameters are integers, and that the link cost functions are nonincreasing with the delay and

(weakly) convex.

A. Notations

� � . � 0 is a feasible partition of an end-to-end delay requirement � on the path � if it satisfies

& �����
�) � . We omit the subscript � and/or the argument � when there is no ambiguity.

�%!� . � 0 denotes the optimal partition, namely the solution of Problem OPQ for an end-to-end

delay requirement � and a path � . We denote by � � � � the norm & �������
� � , hence � is feasible if

� � �) � .

The average � -increment gain for a link � , i.e., the average gain in cost when incrementing

the delay allocation to � by � , is denoted by

� � .
 	�� 0	� . � � .
�
�� 0 5 � � .
�0 0 5 � � � :
Note that, as the cost is nonincreasing with the delay, � ��K implies

� � .
 	� 0) K . We assume

8

that, for each link � , � � .
�0 is weakly convex, namely
� � .
 	� 0 is nonincreasing with
 for any

negative (fixed) � . As the allocation to each link must be non-negative, we define
� � . K 	� 0�� �

for any � � K . The average � -move gain from a link � to a link � , i.e., the average gain in cost

when moving � from the allocation to link � to the allocation to link � , is denoted by

����� � . � 	� 0 � � � .
�
�� 0
 ��� .
 � 5 � 0 :
B. Pseudo-polynomial Solution

Problem OPQ is a special case of the general resource allocation problem which has been

extensively investigated [6], [11], [12]. With the (weak) convexity assumption on the cost func-

tions, it is a convex optimization problem with a simple constraint. It can be proved [12] that a

greedy approach is applicable for such problems, namely it is possible to find an optimal solution

by performing locally optimal decisions.

GREEDY-ADD (� 	� 	 � .�� 0 	 �):
1 	�
�����������
2 while � 	������ do
3 ��
��! �"�#%$'&(���)�+*,�.-0/1�3254�6
4 /87+
�/17:9;4
5 return 	

Fig. 2. Algorithm GREEDY-ADD

Algorithm GREEDY-ADD (Fig. 2) employs such a greedy approach, with a granularity of � .
It starts from the zero allocation and adds the delay � units at a time, each time augmenting the

link where the (negative) � -increment gain is minimal, namely where it most affects the cost.

Using an efficient data structure (e.g., a heap), each iteration requires
� . 7�9;: � � � 0 , which leads to

an overall complexity of
� .

< = 7�9 : � � � 0 . In [11] it is shown that the solution is � -optimal in the

following sense: if �
=

is the output of the algorithm, then there exists an optimal solution � ! ,
such that
 !�?>

=
� 5 � for all � � � and � � !�5 �

=
�) � � � � .3

Algorithm GREEDY-MOVE (Fig. 3) is a modification of Algorithm GREEDY-ADD that, as shall

be explained in Section III-C, has important practical advantages. The algorithm starts from any

feasible allocation and modifies it until it reaches an optimal one. Each iteration performs a

greedy move, namely the � -move with minimal (negative) gain.

Let @ . � 0 be the distance of a given partition from the optimal one, namely @ . �%0 � � � 5 ��! � ,2 In particular, for 4BADC we have � 	FEHGI	 > �.JK� LM� , which establishes the error due to our assumption of integer allocations.

9

GREEDY-MOVE (� 	� 	 � .�� 0 	 �):
1 loop
2 �)2 �
 �. �" #%$'& 7�� ���)� * 7�� � -0	:254)6
3 if * 7�� �.-0	:2 4�6���� return 	
4 / 7
�/ 7 G?4
5 /8�
�/1�.9;4

Fig. 3. Algorithm GREEDY-MOVE

where � ! is the optimal partition that is nearest to � . The next lemma implies that Algo-

rithm GREEDY-MOVE indeed reaches a � -optimal solution.

Lemma 1: Each iteration of Algorithm GREEDY-MOVE decreases @ . � 0 by at least � , unless

� is a � -optimal partition.

Lemma 1 implies that Line 3 can be used as a (� -)optimality check. It also implies that the

algorithm terminates with a � -optimal solution and that the number of iterations is proportional

to @ . �%0 . Theorem 1 summarizes this discussion.

Theorem 1: Given a feasible partition � , Algorithm GREEDY-MOVE finds a � -optimal solu-

tion to Problem OPQ in
� . �)
	 *= 7�9;: � � � 0 .

Proof: By Lemma 1, there are at most @ . � 0 5 � iterations and a � -optimal solution is

achieved. Each iteration can be implemented in
� . 7�9;: � � � 0 and the result follows.

Setting � �"4 we have an immediate corollary for optimal solutions.

Corollary 1: Given a feasible partition � , Algorithm GREEDY-MOVE solves Problem OPQ in
� . @ . �%0 7�9;: � � � 0 .

The linear dependency on @ . �%0 means that the closer the initial allocation is to an optimal

allocation, the less computations are needed to reach a solution. That is, by starting from a

“good” initial allocation we can improve the complexity. The initial allocation could be based

on some (simple) heuristic assumption or, alternatively, on a previously used allocation.

C. Distributed and Dynamic Implementation

Algorithm GREEDY-MOVE can be employed in a distributed fashion. Each iteration can be

implemented by a control message that traverses back and forth between the source and des-

tination. At each traversal, the links � 	 � of Line 2 are identified, and the allocation change of

the previous iteration is performed. This requires
� .�� � � @ . � 0 5 � 0 end-to-end messages (where

� > 4). Such a distributed implementation also exempts us from having to advertise the updated

link cost functions.

10

Algorithm GREEDY-MOVE can be used as a dynamic scheme that reacts to changes in the cost

functions after an optimal partition has been established. Note that the complexity is propor-

tional to the allocation modification implied by the cost changes, meaning that small allocation

changes incur only a small number of computations.

D. Polynomial Solution

In this section we present an improved algorithm of polynomial complexity in the input size

(i.e., � � � and 719;: �). In Section IV, we derive a solution to Problem MOPQ using a similar

technique.

Algorithm BINARY-OPQ (Fig. 4) finds optimal solutions for different values of � . The algo-

rithm consecutively considers smaller values of � , until the minimal possible value is reached,

at which point a (global) optimum is identified.

BINARY-OPQ (� 	 � .�� 0 	 �):
1 4B
 � � � LH�
2 start from the partition 	 A � � 2 �!2������ 2 ���
3 repeat
4 	�
 GREEDY-MOVE - 	:2 4 2���-�� 6 2 L:6
5 4
�� 4 �
	��
6 until 4,��C

Fig. 4. Algorithm BINARY-OPQ

Obviously, the algorithm finds an optimal solution, since its last call to GREEDY-MOVE is

with � � 4 . The number of iterations is clearly of order
� . 7�9 : . � 5 � � � 0 0 . We need to bound

the number of steps required to find the � -optimal partition at Line 4. Each iteration (except the

first, for which � 5 � � � � �) starts from a � � -optimal partition and employs greedy moves until it

reaches a � -optimal partition. This bound is the same for all iterations, since it is a bound on the

distance between a � � -optimal partition and a � -optimal partition.

Lemma 2: Let �� GREEDY-MOVE . � 	�� 	 � .�� 0 	 � 0 . Then @ . � 0) � � � .
The above lemma, proven in [15], resembles the proximity theorem presented in [11].

Theorem 2: Algorithm BINARY-OPQ solves Problem OPQ in
� .�� � � 7�9 : � � � 7�9;: . � 5 � � � 0 0 .

Proof: The final call to GREEDY-MOVE is with � � 4 , which produces an optimal alloca-

tion. By Lemma 2 and Theorem 1, each call to GREEDY-MOVE requires
� .�� � � 719;: � � � 0 . Since

there are
� . 719;: . � 5 � � � 0 0 such calls, the result follows.

11

E. Faster Solutions

The following lemma, which is a different form of the optimality test in Algorithm GREEDY-

MOVE, provides a useful threshold property of optimal partitions.

Lemma 3: Let
� ! � ����� ���(� � � .
� 	�5 4 0 . Then, � is optimal iff

��� .
 � 	�5 4 0 > � ! > 5 � � .
� 	�4 0
for all � 	 � � � .

For all �/� � ,
� � . � 	�5 4 0 is a nonincreasing function (since � � is convex) and (by definition)

� � . �
=4 	�5 4 0�� 5 � � . � 	�4�0 . Thus, the threshold
� ! in Lemma 3 relates to the optimal allocation

as follows:

� � � �
 !� > ��� � � . � 	�5 4 0 > � ! : (1)

This implies that an optimal solution to Problem OPQ can be found by selecting the � largest

elements from the set � � � . � 	�5 4 0 � K$) �) � 	 � � � � . For certain cost functions, this can be

done analytically. For instance, in [16] we provide an
� .�� � � 0 solution for cost functions that

correspond to delay uncertainty with uniform probability distributions. More generally, if the

cost functions are strictly convex, then, given
� ! , one can use (1) to find an optimal solution in

� .� � � 0 . In [16], a binary search is employed for finding
� ! . Accordingly, the resulting overall

solution is of
� .�� � � 719;: . �����	� 0 0 , where

�
���	� � ����/� � � . � 	�5�4�0 � K) �) � 	 � � � � . Note that

7�9 : . � ���	� 0 is bounded by the complexity of representing a cost value.

IV. SOLUTION TO MULTICAST OPQ (MOPQ)

In this section we solve Problem OPQ for multicast trees. Specifically, given a multicast tree,

we need to allocate the delay on each link, such that the end-to-end bound is satisfied on every

path from the source to any member of the multicast group, and the cost associated with the

whole multicast tree is minimized.

We denote the source (root) of the multicast by � and the set of destinations, i.e., the multicast

group, by � . A multicast tree is a set of edges ����� such that for all �6��� there exists

a path, ��� . ��	�� 0 , from � to � on links that belong to the tree � . We assume there is only one

outgoing link from the source � ,4 and denote this link by � .
�
See Remark 1 in the following.

12

� . � � .�� 	 � 0 0 denotes all the outgoing links from � , i.e., all of � ’s neighbors; when
� . � 0 is an

empty set then we call � a leaf. � � is the whole sub-tree originating from � (including � itself).

The branches of � are denoted by
�� � ��� � � � . Observe that

��"��� ���	�)�
 * � � .
A feasible delay partition for a multicast tree � , is a set of link-requirements � � . � 0 �

��
��� �'� � such that & ���(��) 	�� � *
�) � for all ��� � .5

We can now define Problem OPQ for multicast trees.

Problem MOPQ (Multicast OPQ): Given a multicast tree � and an end-to-end delay require-

ment � , find a feasible partition � !� . � 0 , such that � . � !� . � 0 0) � . � � . � 0 0 , for every (other)

feasible partition � � . � 0 .
Remark 1: If there is more than one outgoing link from the source, then we can simply solve

Problem MOPQ independently, for each tree �

 corresponding to an outgoing link � � from � .
Thus, our assumption that there is only one outgoing link from � , does not limit the solution.

We denote by MOPQ . � 	 � 0 the set of optimal partitions on a tree � with delay � . � � . � 0
denotes the tree cost function, i.e., the cost of (optimally) allocating a delay

�
on the tree � . In

other words, � � . � 0 � � . � !� . � 0 0 , where � !� � MOPQ . � 	 � 0 .
A. Greedy Properties

The general resource allocation problem can be stated with tree-structured constraints and

solved in a greedy fashion [12]. An efficient
� .� � � 719;: � � � 7�9 : � 0 algorithm is given in [11].

However, that version of the resource allocation problem (henceforth, the “tree version”) has

a different structure than Problem MOPQ. In particular, the simple greedy approach, namely

repeated augmentation of the link that most improves the overall cost, fails for Problem MOPQ.

However, as we show below, some greedy structure is maintained, as follows: if at each iter-

ation we augment the sub-tree that most improves the overall cost, then an optimal solution is

achieved.

The main difference between the “tree version” and Problem MOPQ is that, in the latter,

the constraints are not on sub-trees, but rather on paths. The greedy approach fails because

of the dependencies among paths. On the other hand, we note that the “tree version” may be

applicable to some other multicast resource allocation problems, in which a feasible allocation

must recursively satisfy, for any sub-tree � � , & �'� � 7
�) � . � � 0 , where � . � � 0 is some arbitrary
�
Again, when no ambiguity exists, we omit the sub-script ? and/or the argument � .

13

(sub-tree) constraint.

We proceed to establish the greedy structure of Problem MOPQ. First, we show that if all link

cost functions are convex, then so is the tree cost function.

The next lemma (see appendix for proof) shows that this is true for a tree with depth 2, i.e.,

all links in
� . �;0 are leaves.

Lemma 4: If � � � � ��� � are convex, and � has a depth of 2, then � � . � 0 is convex.

We can now generalize Lemma 4 to deeper trees by starting from the leaves of the tree and

working our way towards the root, replacing depth-2 sub-trees with equivalent convex links.

We can continue this process, until the whole tree collapses into a single convex link. This is

formally stated in the next lemma (see appendix for proof).

Lemma 5: If � � � � ��� � are convex then so is � � . � 0 .
By Lemma 5, we can replace � by an equivalent convex link. Any sub-tree ��� , can also be

replaced with an equivalent convex link, hence so can
�� . However, these results apply only if

the allocation on every sub-tree is optimal for the sub-tree. This property is sometimes referred

to as the “optimal sub-structure” property [2], and is the hallmark of the applicability of both

dynamic-programming and greedy methods.

The next lemma implies that, for any optimally partitioned trees, we can apply the greedy

properties of Section III. That is, the partition on � and
�� is a solution to Problem OPQ on

the 2-link path . � 	 �� 0 . This suggests that employing greedy moves between � and
�� solves

Problem MOPQ, and this method can be applied recursively for the sub-trees of � . Indeed, this

scheme is used by the algorithms presented in the next sections.

Lemma 6: Let �%!� � MOPQ . � 	 � 0 . Let � � � . � 0 and let the sub-partition �
�
� 7 . � �

0 be

defined as �
�
� 7 . � �

0 � ��

�
� �
 !� � ��� � 7 , where � �

�8�35
 !
 . Then �
�
� 7 � MOPQ . � � 	 � �

0 .
Proof: Let � be the root of the sub-tree � � , and let � be any member of both the multi-

cast group and the sub-tree, i.e., � � � � � � . Since there are no cycles in the tree � , and �
is reachable through � , we must have & �'�(� � 7) � � �

*
 �� � & ���(� �) 	�� �
*
 !� 5
 !
 � � �

. Hence, the

sub-partition �
�
� 7 . � �

0 is feasible for a delay bound � �
on � � . The converse is also true, i.e.,

any feasible partition � %� 7 . � �
0 satisfies �) 	�� �

*) � for all � � � � � � . Therefore, the partition

� � . � 0<� � � !� � � �� 7 � � � %� 7 is feasible. The corresponding cost is � . � !� 0 5 � � � �� 7 �
 � � � %� 7 � .
Since �%!� is an optimal partition, this cost is at least � . � !� 0 , which implies that ��� � �� 7 �)

14

� � � %� 7 � . As � %� 7 is any feasible sub-partition on � � , we must have �
�
� 7 . � �

0 � MOPQ . � � 	 � �
0 .

B. Pseudo-polynomial Solution

We present first a pseudo-polynomial solution, which is based on the employment of moves

between � and
�� . The major difficulty of this method is the fact that � �� . � 0 is unavailable.

Computing � �� . � 0 for a specific
�

requires solving MOPQ for
�� . Fortunately, we can easily

compute � �� . �
 � 0 , given some � ! �� .
� 0 � MOPQ .

�� 	 � 0 . Since the greedy approach is applicable,

we may simply perform a greedy augmentation and recompute the cost. Note that adding � to�� requires adding � to all �#� ��� ���	�)�
 * . In the worst case, this must be done recursively for all the

sub-trees and
� .�� � � 0 links are augmented.

Procedure TREE-ADD (Fig. 5) performs a � -augmentation on a tree � . We assume that, for

each sub-tree � � , the value of
� � � . � � � 	� 0 for the current allocation is stored in the variable

� � � . � 0 . At Line 1 it is decided if � or
�� would be augmented.

� � . � 0 is either
� �� . � � � 0 or

�
 .

 	� 0 , therefore this decision can be made by a simple comparison. If
�� should be aug-

mented, then Procedure TREE-ADD is called recursively on its components. Finally,
� � . � � 0 is

updated at Lines 6–7.

TREE-ADD (� 	� 	 �):
1 if *��)-0/�� 254�6:A�* � -04�6 then
2 / �
 / � 9 4
3 else
4 for each

����� -0)6 do
5 TREE-ADD -0	:2 4�2 ?,�06
6 * � -04�6:
�#%$'&1��* � -0/ � 2 4)6 2
	 ������ �
� * ��� -04�6 � a

7 * � - G+4�6F
 #%$'&1��*��)-0/�� 2�G+4)6 2�	 ������ ��� * � � - G+4�6 � a

�
If is a leaf we define the sum to be � .

Fig. 5. Procedure TREE-ADD

Algorithm BALANCE (Fig. 6) is a dynamic programming scheme that solves Problem MOPQ.

It starts from any feasible tree partition and performs greedy moves between � and
�� . The while

loop condition at Line 7 computes
�
 � �� . � 	� 0 . If it is negative then moving � from � to

��
reduces the overall cost. The augmentation of

�� is done by calling TREE-ADD on each of its

components. The while loop at Line 11 performs moves from
�� to � in a similar way.

To be able to check the while condition and for calling TREE-ADD, we must have
� � � . � � 0

15

BALANCE (� 	� 	 �):
1 if ? is a leaf then
2 * � -04�6:
 *��)-0/���254)6
3 * � - G+4�6:
 * � -0/ � 2 G+4)6
4 return
5 (else) for each

��� � -0 �6 do
6 BALANCE -0	 2 4 2 ? � 6
7 while 	 ������ �
� * � � -04�6 9 *���-0/ � 2 G+4�6H���
8 / �
 / � GI4
9 for each

����� -0)6 do
10 TREE-ADD -0	:2 4�2 ?,�06
11 while * � -0/ � 254�6 9 	 ������ �
� * � � - G+4)6 ���
12 / ��
 /�� 9 4
13 for each

����� -0)6 do
14 TREE-ADD -0	:2�G+4�2 ?,� 6
15 * � -04�6:
�#%$'&1��*��)-0/�� 2 4)6 2
	 ������ �
� * � � -04�6 �
16 * � - G+4�6F
 #%$'&1��*��)-0/�� 2�G+4 2 	 ������ �
� * � � - G+4�6 �

Fig. 6. Algorithm BALANCE

for all �<� � . This requires an optimal partition on each sub-tree. Algorithm BALANCE makes

sure that this is indeed the case by recursively calling itself (Line 5) on the components of
�� .

Since any allocation to a leaf is an optimal partition on it, the recursion is stopped once we reach

a leaf. After the tree is balanced, the algorithm updates
� � . � � 0 , which is used by the calling

iteration.

We proceed to analyze the complexity of BALANCE. We first define a distance @ � . � � 0 which

is the tree version of the path distance defined in Section III-B. Let @
 . � � 0 � �

 5
 !
 � , where

�%!� is the optimal partition nearest to � . Let � �� � �
�
 �� �
 !��� � � � � . We define the distance of

� � from an optimal partition as @ . � � 0 �"& ��� � @
 . � �� � 0 .
Theorem 3: Given a feasible partition � , Algorithm BALANCE finds a � -optimal solution to

Problem MOPQ in
� .�� � �'. @ . �%0/5 � 0
 � � � 0

Proof: @ . �%0/5 � bounds the number of calls to TREE-ADD. In the worst case, TREE-ADD

requires
� .�� � � 0 for each call. The recursive calls to BALANCE also require

� .� � � 0 .
Remark 2: We can solve Problem MOPQ by applying Algorithm BALANCE on the feasible

partition � � ����

 � � �
�/� K � ���� � � . Clearly, @ . �%0) � in this case, hence Prob-

lem MOPQ can be solved in
� .� � � � 5 � 0 .

16

B.1 Example

We illustrate Algorithm BALANCE by an example. Figure 7 shows a simple tree with a source�
and two destination nodes � 	 � . Figure 7(a) shows an initial (nonoptimal) allocation for an

end-to-end requirement of 4�� . The cost functions for the links are all of the form

� � .
 � 0�� � �� � 5 4�5#
 � :
We assume

��� % � � & < � 4 and
� % & � � %L' � � . The values of ��� .
�0 	 � � .
 	�5 4 0 and

� � .
 	�4 0
are detailed in Tables I and II.

TABLE I

THE COST FUNCTIONS FOR LINKS ��� AND ���
/ C 	 	
 � � � �

��-0/16 � 	 	
�
	
 ��	 �
��
 �
���
��� �
�� � ���
* -0/ 2 G C 6 � � C �
	 C ��� C � C 	 C �
	 � C ��	 � C ��
 	 C �����
* -0/ 2�C 6 G � G C �
	 G C ��� G C � C 	 G C � 	 � G C ��	 � G C ��
 	 G C ����� G C �� 	

TABLE II

THE COST FUNCTIONS FOR LINKS ��� AND ���
/ C 	 	
 � � � �

��-0/ 6 	
 ��	 � ��� �
�� C � ��� C 	 � C C C
 � C 	 C � � C � C � � C
* -0/ 2�G C 6 � 	
��	 	
� C � 	 ��	�� 	
����	 	 ����� 	
� C
�	 	
� C ��� 	 �
	����
* -0/ 2 C 6 G 	 ��	 G 	 � C � G 	
��	�� G 	 ����	 G 	
����� G 	
� C
�	 G 	
� C ��� G 	
�
	���� G 	 ��	 	�	

������
������ ������

������
������

�

� �

!

" " ##

�
��

$

(a)

������
������ ������

������
������

�

� �

!

" " ##

2
��

%

(b)

������
������ ������

������
������

�

� �

!

" " ##

�

&�
&

(c)

������
������ ������

����'�
����'�

�

� �

!

" " ##

�

%2
�

(d)

������
������ ������

����'�
����'�

�

� �

!

" " ##

�

$2
�

(e)

Fig. 7. Example: application of Algorithm BALANCE

Figure 7 shows the progress of � with the algorithm, where
 � is specified for each link.

With the initial allocation (Fig. 7(a)), (� is dominant for the branch
� � and

� � � . � 	�4 0��

17

� & < . � 	�4�0 � 5 4�56� . The allocation on the branch is clearly optimal, since reducing the alloca-

tion to either
� (or (� implies infinite cost on the branch. For link

� � we have
� % ' . F 	�4�0��

5 �65�76� and for the link
� �

we have
� � % . H 	�5 4 0/� 4�51F � . Summing all, we get 4�51F � 5 4�56��5�65�7�� � K , hence Procedure TREE-ADD is called to augment the allocation to

�� by 4 . The

result is shown in Fig. 7(b). Note that the procedure augmented (� and not
� (, because

� � � . � 	(4 0�� � �� � . � 	�4 0�� � & < . � 	(4 0 .
With a similar computation, the next call to Procedure TREE-ADD returns the allocation of

Fig. 7(c). At this point, (� is no longer dominant on its branch, because
� % & . � 	�4 0 � 5 �65 4�9 �

� & < . F 	�4�0 � 5 4�5 4�� . Thus, the next augmentation is to links
� (and

� � . The result is

shown in Fig. 7(d). At this stage (� becomes dominant again on its branch and
� � � . � 	(4 0 �� & < . F 	�4�0�� 5 4�5 4�� . Although

� � % . 9 	�5 4 0�� 4�5 4�� too, the algorithm still augments
�� because

of the added (negligible) gain from
� %L' . � 	�4 0 �35 �65 4 DJ9 . The final (and optimal) allocation is

shown in Fig. 7(e).

C. Distributed and Dynamic Implementation

Algorithm BALANCE can be readily applied in a distributed fashion. Each augmentation in

Procedure TREE-ADD is propagated from the root to the leaves. A straightforward implemen-

tation requires
� .�� 0 time,6 where � is the depth of the tree. At most

� .�� 0 recursive calls to

BALANCE are performed sequentially. Finally, the number of calls to TREE-ADD after the sub-

trees are balanced, is bounded by @ ���	�
 . � 0/5 � , where @ ���	�
 . �%0 � ���� �'� � @
 . � �� � 0 . The overall

complexity is, therefore,
� .�� � @ ���	�
 . � 0/5 � 0 . Note that, for balanced (in the topological sense)

trees, � � � . 719;: � � � 0 .
As is the case for Algorithm GREEDY-MOVE, Algorithm BALANCE can be used as a dynamic

scheme that reacts to changes in the cost functions after an optimal partition is established.

The complexity of Algorithm BALANCE is proportional to the distance from the new optimal

allocation. Again, small changes (i.e., small @ . � 0) incur a small number of computations.

D. Polynomial Solution

Next, we present a polynomial solution. Algorithm BINARY-MOPQ (Fig. 8) uses an approach

that is identical to the one used for the solution of Problem OPQ. The algorithm consecutively&
assuming that traveling a link requires � - C�6 time units.

18

calls BALANCE for smaller values of � , until the minimal possible value is reached, at which

point an optimal partition is identified.

BINARY-MOPQ (� 	 � .�� 0 	 �):
1 / �+
 �
2 /8�
 � � ��� ?��M
3 4B
 � � � ? �
4 repeat
5 	�
 BALANCE - 	:254 2 ?,6
6 4
�4 �
	
7 until 4,J�C

Fig. 8. Algorithm BINARY-MOPQ

We will show that, at each iteration of the algorithm, @ ���	�
 . � 0 is bounded by � � . Therefore,

@ . � 0/5 �) � � � � and each iteration requires
� .� � � � � 0 . Lemma 7 (see appendix for proof) is the

multicast-equivalent of Lemma 2.

Lemma 7: Let �� BALANCE . � 	�� 	 � 0 . Then, @
 . �%0 � � .
The same bound applies to all iterations and the number of iterations is 7�9;: . � 5 � � � 0 . Thus,

we established the complexity of Algorithm BINARY-MOPQ.

Theorem 4: Algorithm BINARY-MOPQ solves Problem MOPQ in
� .�� � � � � 719;: . � 5 � � � 0 0 .

Comparing this result to the
� .� � � � 5 � 0 complexity of Algorithm BALANCE (see Remark 2),

indicates that Algorithm BALANCE is preferable when � 5 � � � � � � 719;: . � 5 � � � 0 .
Again, note that, for balanced trees, � � � . 7�9;: � � � 0 . Also, we can implement Algorithm BIN-

ARY-MOPQ in a distributed fashion (as discussed in Section IV-C), with an overall complexity

of
� .�� � 719;: . � 5 � � � 0 .
Remark 3: Algorithm BINARY-MOPQ starts from a coarse partition and improves the result

by refining the partition at each iteration; this means that one may halt the computation once the

result is “good enough”, albeit not optimal.

E. Heterogeneous multicast groups

In general, the multicast group may be heterogeneous, in the sense that each member �+� � ,

may have a different end-to-end delay requirement ��� . The greedy properties still hold in this

case, hence the algorithms presented above may be used to solve this generalized version of

Problem MOPQ. However, creating an initial feasible allocation in this case is much more

complex, as we need to assure that all the various requirements are satisfied.

19

Procedure INIT-HETERO (Fig. 9) creates such a feasible allocation. It traverses the tree from

the leaves to the root. On each sub-tree � � it creates a feasible allocation according to the

requirements of the multicast group members that belong to the sub-tree. This allocation has the

property that the allocation to root link � is the strictest requirement of any member in ��� . That

is, the allocation to the root link is the maximal possible allocation.

INIT-HETERO (�1� ��� �<� � ��� 	 �):
1 if ? is a leaf then
2 / ��
���� , where � is the multicast group member at the leaf.
3 return
4 (else) for each

��� � -0 �6 do
5 INIT-HETERO - ����� ��� � � ���
	 2 ?,��6
6 / �+
 #%$'& ������ �
� /1�
7 if AD-�� 2��6 , where �

���
then

8 / ��
 #%$'&1� /���2 ��� �
9 for each

��� � -0 �6 do
10 / �
�/ � G?/ �

Fig. 9. Procedure INIT-HETERO

The procedure starts at the leaves, where such a feasible allocation is simply the end-to-end

delay requirement of the multicast group member at that leaf (Line 2). As the algorithm moves

towards the root, sub-trees are combined and their allocation is updated. As much delay as

possible is pushed from the sub-trees to the root. The allocation for the root of the combined

tree is computed at Lines 6–8: first, it cannot be larger than the strictest requirement on the

sub-trees (Line 6); second, if there is a multicast group member on the edge of the root link,

then the allocation cannot exceed its end-to-end delay requirement (Line 8). Line 10 updates the

allocation to the sub-trees by reducing it in the amount allocated to the root link.

We proceed to analyze the complexity. The procedure performs one tree traversal. Each link

is considered twice, once when INIT-HETERO is applied to its sub-tree, and once when it is

applied to its immediate ancestor. Thus, the overall complexity of Procedure INIT-HETERO is
� .� � � 0 .7

The heterogeneous version of Problem MOPQ can be solved by first allocating the excess

delay on each sub-tree and then solving a homogeneous allocation problem with the rest of the

delay. Note that Procedure INIT-HETERO allocates this amount exactly to the root link. That is,

either Algorithm BALANCE or Algorithm BINARY-MOPQ is called on each sub-tree �$� with a

delay bound of
 �� , where
 �� is the initial allocation returned by Procedure INIT-HETERO.%
A distributed implementation requires � -��56 .

20

Lemma 8: The heterogeneous Problem MOPQ can be solved in

� � � � � � .�� 719;: .
 ���	� 5 � � � 0
 @ . � � 0/5#
 ���	� 0 � 	
where � � is the initial allocation created by Procedure INIT-HETERO and
 ���	� � ���� ��� �
 �� .

Proof: We use Algorithm BINARY-MOPQ, with the initial � set to
 ���	� 5 � � � . Without

taking into account the creation of the initial allocation and the call to Algorithm BALANCE

on it, the complexity would have been
� .�� � � � .�� 719;: .
 ���	� 5 � � � 0 . Creating the initial allocation

requires
� .�� � � 0 . By inserting � �
 ���	� 5 � � � in the complexity expression for BALANCE, we get

� .� � � � @ . � � 0 5#
 ���	� 0 . Thus, the overall complexity is
� � � � � � � � 7�9;: .
 ���	� 5 � � � 0
@ . � � 0 5#
 ���	� � � .

We proceed to analyze @ . � � 0 . Since
 �� is the maximal possible allocation for the sub-tree � � ,
any change in the allocation can only be made from � to

�� � . Hence, we must have

@
 . � �� � 0)
 �� 	 (2)

and, from its definition, @ . � � 0�) & ��� �

�� . Let

�
denote the inner-tree multicast group mem-

bers, and let 2 denote the leaf members. Note that � � �
 � 2 � � � � � and that 2 includes all the

leaves of the tree. After the update at Line 10 of INIT-HETERO, either
 ���K for at least one link

��� � . � 0 or � � . � 	 � 0 , where � � �
. Thus, the number of links for which
 �� �8K is bounded

by & ��� � . � . � 0 564 0
 � � � � � 2 �
 � � � � � � � , which implies @ . � � 0)
 ���	� � � � . Combining this

result with Lemma 8 we get an overall complexity of
� .�� � � � .�� 719;: .
 ���	� 5 � � � 0
 � � � 0 0 .

We can improve upon this result in the following way. First, we rewrite the complexity of

Algorithm BALANCE as
� .� � �
 & ��� � @
 . � �� � 0 � ��� � 5 � 0 . Using (2), the complexity of calling

BALANCE on the initial allocation � � is
� � � � �
 & ��� �

�� � � � � 5 � � . Next, we observe that, for

any feasible allocation � � . � 0 , we have & �'� �
� � ��� �) � � � � .8 In our case �) �
 ���	� , hence

creating the initial allocation and calling BALANCE on it requires

� .� � ��. �
 �
 ���	� 5 � 0 0�� � .�� � �'.�� � � � 0 04:
Thus, we established the following theorem.

Theorem 5: The heterogeneous Problem MOPQ can be solved in
� .� � � � � 719;: .
 ���	� 5 � � � 0 0 .$

this can be proved by induction on the depth of the tree.

21

V. ROUTING ISSUES

In the previous sections we addressed and solved optimal QoS partition problems for given

topologies. These solutions have an obvious impact on the route selection process, as the quality

of a route is determined by the cost of the eventual (optimal) QoS partition over it. Hence,

the unicast partition problem OPQ induces a unicast routing problem, OPQ-R, which seeks a

path on which the cost of the solution to Problem OPQ is minimal. Similarly, Problem MOPQ

induces a multicast routing problem MOPQ-R. In this section we briefly discuss some current

and future work in the context of these routing problems.

A. OPQ-R

As was the case with Problem OPQ, with OPQ-R too there is a significant difference between

bottleneck QoS requirements and additive ones. As explained in Section II, for a bottleneck QoS

requirement, the end-to-end requirement determines � ��� � for all links in the path (or tree),

and a corresponding link cost, � � . � 0 . Therefore, the routing problem OPQ-R boils down to a

“standard” shortest-path problem with link length � � . � 0 .
As noted, in the context of Problem OPQ, providing delay requirements through rate-based

schedulers [8], [22], [25], [26], translates the additive requirement into a (simpler) bottleneck

requirement. However, in the context of Problem OPQ-R, such a translation is not possible

anymore, since paths differ also in terms of constant (rate-independent) link delay components.

Efficient solutions for Problem OPQ-R, under delay requirements and rate-based schedulers,

have been presented in [9].

The general OPQ-R problem, under additive QoS requirements, is much more complex, and

has been found to be intractable [16]. Note that, even in a simpler, constant-cost framework,

where each link is characterized by a delay-cost pair (rather than a complete delay-cost function),

routing is an intractable problem [7]. In the latter case, optimal routing can be achieved through

a pseudo-polynomial dynamic-programming scheme, while � -optimal solutions can be achieved

in polynomial time [10].

The general OPQ-R problem, under the framework of the present study, was solved in [16].

The solution is based on dynamic-programming and assumes that the link cost functions are

convex. An exact pseudo-polynomial solution, as well as an � -optimal polynomial solution,

22

have been presented. We note that a single execution of those algorithms finds a unicast route

from the source to every destination and for every end-to-end delay requirement (up to a given

bound).

B. MOPQ-R

As could be expected, finding optimal multicast trees under our framework is much more

difficult than finding unicast paths. Even with bottleneck QoS requirements, MOPQ-R boils

down to finding a Steiner tree, which is known to be an intractable problem [7].

We are currently working on solving MOPQ-R for additive QoS requirements. We estab-

lished an efficient scheme for the fundamental problem of adding a new member to an existing

multicast tree. This provides a useful building block for constructing multicast trees. Another

important building block is the optimal sub-structure property (established in Section IV), which

is an essential requirement for the application of greedy and dynamic programming solution ap-

proaches.

Interestingly, the above problem, of adding members to multicast trees, may serve to illustrate

the power of our framework over the simpler, constant-cost framework. In the latter, there

is a single delay-cost pair for each link (rather than a complete delay-cost function), and the

goal is to find a minimal cost tree that satisfies an end-to-end delay constraint.9 Under that

framework, it is often impossible to connect a new member to the “tree top”, i.e., the leaves and

their neighborhood. This is a consequence of cost minimization considerations, which usually

result with the consumption of all (or most of) the available delay at the leaves. For example,

consider the network of Fig. 10. The source is
�

and the multicast group is � � 	�(� ; the end-to-

end delay bound is 4�K and the link delay-cost pairs are specified. Suppose we start with a tree for

node
�

, i.e., the link . � 	 � 0 . Since
�

exhausts all the available end-to-end delay, we cannot add

(to the tree by extending
�

’s branch with the (cheap) link . � 	 (0 ; rather, we have to use the

(expensive) link . � 	 (0 . Note that we would get the same result even if there were an additional

link from
�

to
�

with shorter delay, say D , and slightly higher cost, say 4 4 .
Our framework allows a better solution, as it lets the link . � 	 � 0 advertise several delays and

costs. For instance, it could advertise a delay of 4 K with a cost of 4�K and a delay of D with a

cost of 4;4 . When adding (to the tree, we can change the delay allocation on . � 	 � 0 from 4�K
�

That framework was the subject of numerous studies on constrained multicast trees.

23

� �

 !# $!# $
 !# $

% &
�< , ��� � ' , ��� < , ��� � ' , ���

< , � � ' , �
Fig. 10. Example: extending a multicast tree

to D (thus paying 4;4 instead of 4 K), which allows us to use the link . � 	 (0 for adding (. The

cost of the resulting tree is 4 � , as opposed to ��K in the previous solution (i.e., using link . � 	 (0).
Note that, when adding (, one can consider the “residual” cost for each link, i.e., the cost of

tightening the delay bound on existing allocations. In our example, the residual cost function of

link . � 	 � 0 is K for a delay of 4 K (i.e., the current allocation) and 4 for a delay of D (i.e., the added

cost for tightening the requirement). The last observation implies that adding a new member to

an existing tree boils down to finding an optimal unicast path, with respect to the residual cost

functions, from the new member to the source; i.e., an instance of Problem OPQ-R, for which

efficient solutions have been established in [16].

VI. CONCLUSIONS

We investigated a framework for allocating QoS resources on unicast paths and multicast

trees, which is based on partitioning QoS requirements among the network components. The

quality of a partition is quantified by link cost functions, which increase with the severity of

the QoS requirement. We indicated that this framework is consistent with the major proposals

for provisioning QoS on networks. Indeed, the problem of how to efficiently partition QoS

requirements among path or tree links has been considered in previous studies, however till now

only heuristic approaches have been addressed. The present study is the first to provide a general

optimal solution, both for unicast paths and multicast trees.

We demonstrated how the various classes of QoS requirements can be accommodated in

within our framework. We showed that the partitioning problems are simple when dealing with

bottleneck requirements, such as bandwidth, however they become intractable for additive (or

multiplicative) requirements, such as delay, jitter and loss rate. Yet we established that, by in-

troducing a mild assumption of weak convexity on the cost functions, efficient solutions can be

derived.

24

We note that weak convexity essentially means that, as the QoS requirement weakens, the rate

of decrease of the cost function diminishes. This is a reasonable property, as cost functions are

lower-bounded, e.g. by zero. Moreover, it indeed makes sense for a cost function to strongly

discourage severe QoS requirements, yet gradually become indifferent to weak (and, eventually,

practically null) requirements. Hence, the scope of our solutions is broad and general.

Specifically, we presented several greedy algorithms for the unicast problem (OPQ). Algo-

rithm GREEDY-MOVE is a pseudo-polynomial solution, which can be efficiently implemented

in a distributed fashion. The complexity of this solution is
� . @ . � 0 7�9;: � � � 0 , where @ . � 0�)�� is

the distance between the initial allocation, � , and the optimal one. It can also be applied as an

incremental scheme to modify an existing allocation. This is useful in dynamic environments

where the cost of resources changes from time to time. As the complexity is proportional to

@ . � 0 , small cost changes require only a small number of computations to regain optimality. Al-

gorithm BINARY-OPQ is a polynomial solution of complexity
� .� � � 7�9;: � � � 719;: . � 5 � � � 0 0 , which

served as the basis for our solution to the multicast problem MOPQ.

Next, we addressed the multicast problem MOPQ. We began by showing that the funda-

mental properties of convexity and optimal sub-structure generalize to multicast trees. Then,

we established that Problem MOPQ also bears a greedy structure, although much more com-

plex than its OPQ counterpart. Again, the greedy structure, together with the other established

properties, provided the foundations for efficient solutions. Algorithm BALANCE is a pseudo-

polynomial algorithm which can be applied as a dynamic (incremental) scheme. Its complexity

is
� .� � � @ . �%0
 � � � 0 , where @ . �%0 is, again, the distance between the initial allocation and the

optimal one. A distributed implementation requires
� .�� � @ ���	�
 . � 0 0 , where � is the depth of the

tree and @ ���	�
 . � 0 is the maximal distance of the allocation of any link from its optimal value.

Note that, for balanced trees, � � � . 719;: � � � 0 . Algorithm BINARY-MOPQ is a polynomial

solution with a complexity of
� .�� � � � � 7�9;: . � 5 � � � 0 0 . A distributed implementation of this al-

gorithm requires
� .��
� 7�9 : . � 5 � � � 0 . We established that our solutions are applicable, with the

same complexity, to the heterogeneous case, where multicast members may have different delay

requirements.

Lastly, we discussed the related routing problems, OPQ-R and MOPQ-R. Here, the goal is to

select either a unicast path or multicast tree, so that, after the QoS requirements are optimally

25

partitioned over it, the resulting cost would be minimized. Again, unicast proves to be much

easier than multicast. In particular, for bottleneck QoS requirements, OPQ-R boils down to a

simple shortest-path problem. For additive requirements, OPQ-R is intractable, yet an efficient,
� -optimal solution has been established in [16]. For multicast, all the various versions of MOPQ-

R are intractable. We are currently investigating Problem MOPQ-R under additive requirements,

and have obtained an efficient scheme for adding new members to a multicast tree.

Several important issues are left for future work. One is multicast routing, i.e., Problem MOPQ-

R, for which just initial (yet encouraging) results have been obtained thus far. Another important

aspect is the actual implementation of our solutions in within practical network architectures. In

this respect, it is important to note that a compromise with optimality might be called for. Indeed,

while our solutions are of reasonable complexity, a sub-optimal solution that runs substantially

faster might be preferable in practice. Relatedly, one should consider the impact of the chosen

solution for QoS partitioning on the routing process. The latter has to consider the quality of

a selection (i.e., path or tree) in terms of the eventual QoS partition. This means that simpler

partitions should result in simpler routing decisions, which provides further motivation for com-

promising optimality for the sake of simplicity. The optimal solutions established in this study

provide the required starting point in the search of such compromises.

Lastly, we believe that the framework investigated in this study, where QoS provisioning is

characterized through cost functions, provides a powerful paradigm for dealing with QoS net-

working. We illustrated the potential benefits through an example of dynamic tree maintenance.

Future study should further consider the implications and potential advantages of our framework,

when applied to the various problems and facets of QoS networking.

26

APPENDIX

In the following we present some proofs that were omitted from the main text.

Lemma 4: If � � � � ��� � are convex, and � has a depth of 2, then � � . � 0 is convex.

Proof: In any optimal partition � !� , we must have for all �<� � . �;0 ,
 !� � � �� �G�	5
 !
 .
Hence, the cost associated with the allocation to

�� is � �� � � �� � �3& ����)
 * � � � � �� � . This is a

sum of convex functions, therefore it is convex too. Thus,
�� maybe be replaced by an equivalent

link with a convex cost function, that is, � ! ! �
�

 	 � ���� is an optimal partition on a path of

length 2. We can employ the results of Section III on this path. Thus, the greedy properties hold

and we have

� � . � 	�5 4 0 � � �1�
� �
 .

 	�5�4�0 	 � �� . � �� 	(5�4 0 � 	

5 � � . � 	
 4�0 � � �
�
5 �
 .

 	
 4�0 	�5 � �� . � �� 	�
 4 0 � :

Using Lemma 3, we get that
� � . � 	�5 4 0 > 5 � � . � 	�
 4 0 � � � . �
 4 	�5�4�0 . This applies to

any choice of � , hence
� � . � 	�5�4�0 is nonincreasing, which implies that � � . � 0 is convex.

Lemma 5: If � � � � ��� � are convex then so is � � . � 0 .
Proof: By induction on the depth of the tree, � . Lemma 4 is the basis of the induction.

Suppose Lemma 5 is true for trees of depth less than � . If � has depth � then for each � � � . � 0 ,
the depth of the sub-tree � � is no greater than � 5 4 . By the inductive assumption, each such

sub-tree can be collapsed to a single convex link. We get a depth-1 tree, which, by Lemma 4, is

equivalent to a single convex link.

Lemma 7: Let �� BALANCE . � 	�� 	 � 0 . Then, @
 . �%0 � � .
The proof of Lemma 7 relies on the following discussion. Let

� � . � 	�� 0 denote the value of
� � . � 0 at the termination of BALANCE . � . � 0 	� 	 � 0 . Note that

� � . � 	� 0 assumes a � -optimal

partition on the tree, hence it is different from . � � . �
 � 0 5 � � . �
 � 0 0 5 � , which assumes

the optimal partition. We use the following two lemmas in our proof. Lemma A.1 relates a

nonoptimal allocation to an optimal one. Lemma A.2 is the crux of the proof.

Lemma A.1: � �1��� �
 . � 	�� 0 	 � �� . (� 0 ��) � � . �
 (�� 0 .
Proof: Let � !� � .
 !
 	
 ! �� 0 be the optimal allocation for a delay requirement of � � �
 (

on � . Following the discussion of Section IV-A this is equivalent to an optimal allocation for a

two-link path . � 	 �� 0 . Let
� !/� ������� �
 .
 !
 	� 0 	 � �� .
 ! �� 	�� 0 � . If

�)
 !
 then (>
 ! �� and vice

27

versa. We can generalize (1) (section III-E) to establish that � �1��� �
 . � 	�� 0 	 � �� . (� 0 �) � ! .
The result follows since

� � . �
 (� 0 � � ! .
Lemma A.2:

� � . � 	�� � 0) � � . �
 � � 	� 0 .
Proof: The proof is by induction on the depth of the tree � .

Base: for � � 4 , � is a link and the lemma becomes
� � . � 	� 0) � � . � �
 � 	� 0 , which follows

from the convexity of � � .
Step: suppose the lemma holds for trees with depth less than � . Algorithm BALANCE termi-

nates with
� � . � 0 � �1��� �
 .

 	� 0 	 & �'��)
 * � � � . � 0 � . Each � � has depth � 5 4 . Applying the

inductive assumption on � and on each � � , we get

� � . � 	�� � 0) � �1�
�� � �
 .

 � 	� 0 	 �

���	�)�
 * � � � . �
��
 .�� 5 4 0 � 	� 0

���
�

� � �1�
� �
 .

 � 	� 0 	 � �� . � ��
 .�� 5 4 0 � 	� 0 � :

Using Lemma A.1 we get
� � . � 	�� � 0) � � . .

�� 0
 . � ��
 .�� 5 4�0 � 0 	� 0�� � � . �
 � � 	� 0 .

We can now prove Lemma 7.

Proof: From the the convexity of �
 , we have for � > � ,
�
 .

 5 .�� 5 4 0 � 	(5 � 0 > �
 .

 	(5 � � 0 �

from the � � -optimality of � ,
�
 .

 	�5 � � 0 > 5 � �� . � �� 	�� � 0+:

Applying Lemma A.2 on
�� , we have

5 � �� . � �� 	�� � 0�� 5
�
���	�)�
 * � � � . �

�� 	�� � 0 >
5 �
���	�)�
 * � � � . �

��
 .�� 5 4 0 � 	� 0 � 5 � �� . � ��
 .�� 5 4 0 � 	� 0�:
Combining all, we get

�
 .

 5 .�� 5 4 0 � 	�5 � 0 > 5 � �� . � ��
 .�� 5 4 0 � 	� 0+:
Thus, no more than .�� 5 4 0 greedy � -moves can be made from � to

�� . This applies for � � � 4 ,
hence the allocation to � is not changed by more than � 5 4 . This implies @
 . � 0 � � , as required.

REFERENCES

[1] G. Apostolopoulos, R. Guérin, S. Kamat, A. Orda, T. Przygienda, and D. Williams. QoS routing mechanisms and OSPF
extensions. Internet Draft, December 1998.

[2] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT Press, Cambridge, MA, 1990.
[3] E. Crawley, R. Nair, B. Rajagopalan, and H. Sandick. A framework for QoS-based routing in the internet – RFC no. 2386.

Internet RFC, April 1998.
[4] R. Braden (Ed.), L. Zhang, S. Berson, S. Herzog, and S. Jamin. Resource reSerVation Protocol (RSVP) version 1,

functional specification – RFC no. 2205. Internet RFC, September 1997.
[5] V. Firoiu and D. Towsley. Call admission and resource reservation for multicast sessions. In Proceedings of the IEEE

INFOCOM’96, San Francisco, CA, April 1996.
[6] G. N. Frederickson and D. B. Johnson. The complexity of selection and ranking in

� 9�� and matrices with sorted
columns. Journal of Computer and System Sciences, 24:197–208, 1982.

[7] M.R. Garey and D.S. Johnson. Computers and Intractability. Freeman, San Francisco, 1979.
[8] L. Georgiadis, R. Guérin, V. Peris, and K. N. Sivarajan. Efficient network QoS provisioning based on per node traffic

shaping. IEEE/ACM Transactions on Networking, 4(4):482–501, August 1996.
[9] R. Guérin and A. Orda. QoS-based routing in networks with inaccurate information: Theory and algorithms. IEEE/ACM

Transactions on Networking, 1999. in press.
[10] R. Hassin. Approximation schemes for the restricted shortest path problem. Mathematics of Operations Research,

17(1):36–42, February 1992.
[11] D. S. Hochbaum. Lower and upper bounds for the alloction problem and other nonlinear optimization problems. Mathe-

matics of Operations Research, 19(2):390–409, 1994.
[12] T. Ibaraki and N. Katoh. Resource Allocation Problems. the foundations of computing. MIT Press, Cambridge, MA, 1988.
[13] V. P. Kompella, J. C. Pasquale, and G. C. Polyzos. Multicast routing for multimedia communication. IEEE/ACM Transac-

tions on Networking, 1:286–292, 1993.
[14] Y. A. Korilis, T. A. Varvarigou, and S. R. Ahuja. Incentive-compatible pricing strategies in noncooperative networks. In

Proceedings of the IEEE INFOCOM’98, San Francisco, CA, April 1998.
[15] D. H. Lorenz and A. Orda. Optimal partition of QoS requirements on unicast paths and multicast trees. Research

Report EE Pub. No. 1167, Department of Electrical Engineering, Technion, Haifa, Israel, July 1998. Available ftp:
ftp://ftp.technion.ac.il/pub/supported/ee/Network/lor.mopq98.ps.

[16] D. H. Lorenz and A. Orda. QoS routing in networks with uncertain parameters. IEEE/ACM Transactions on Networking,
6(6):768–778, December 1998.

[17] S. H. Low and P. P. Varaiya. A new approach to service provisioning in ATM networks. IEEE/ACM Transactions on
Networking, 1(3):547–553, 1993.

[18] J. K. MacKie-Mason and H. R. Varian. Pricing congestable network resources. IEEE Journal on Selected Areas in
Communications, 13(7):1141–1149, September 1995.

[19] R. Nagarajan, J.F. Kurose, and D. Towsley. Allocation of local quality of service constraints to meet end-to-end require-
ments. In IFIP Workshop on the Performance Analysis of ATM Systems, Martinique, January 1993.

[20] A. Orda and N. Shimkin. Incentive pricing in multi-class communication networks. In Proceedings of the IEEE INFO-
COM’97, Kobe, Japan, April 1997.

[21] Private network-network interface specification v1.0 (PNNI). ATM Forum Technical Committee, March 1996.
[22] A. K. Parekh and R.G. Gallager. A generalized processor sharing approach to flow control in integrated services networks:

the multiple node case. IEEE/ACM Transactions on Networking, 2:137–150, 1994.
[23] S. Shenker, C. Partridge, and R. Guerin. Specification of guaranteed quality of service – RFC no. 2212. Internet RFC,

November 1997.
[24] Z. Wang and J. Crowcroft. Quality-of-service routing for supporting multimedia applications. IEEE JSAC, 14(7):1288–

1234, September 1996.
[25] H. Zhang. Service disciplines for guaranteed performance service in packet-switching networks. Proceedings of the IEEE,

83(10):1374–1399, October 1995.
[26] H. Zhang and D. Ferrari. Rate-controlled service disciplines. Journal of High Speed Networks, 3:389–412, 1994.

